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I. INTRODUCTION 

The basis for reactor noise analysis is the comparison of the 

output noise signal to the assumed or known input noise signal to 

observe how the reactor has modified the signal. The applicable 

kinetic model of the reactor is then used to determine what the rela-

tionship between the various reactor parameters must be in order to 

modify the signal in the way that has been observed. 

The above method is the basic method of reactor noise analysis, 

but the implementation of this basic method is quite varied. Many 

options and combinations of options are available to the designer of 

a reactor noise analysis system. 

One option is the choice of input signal. Experiments by 

Balcomb [2], Stern [22], and Valat [24] used externally applied 

signals. Other experiments such as those of Cohn [8], Danofsky [10], 

and Seifritz, et al. [21], relied on the natural stochastic pro-

cesses of fission and capture for the random noise input signal with 

no externally applied input. When externally applied signals are 

used, care must be taken to insure that the perturbations intro-

duced are small enough to preserve system linearity. Linear formula-

tions of reactor transfer functions are valid for small signal 

analysis only. 

The second option in noise analysis methods is the choice of 

analyzing the signals in the frequency or the time domain. Balcomb, 

et al. [3], Dragt [13], and Rajagopal [17] performed experiments in 

the time domain, while Badgley, et al . [1] and Seifritz [19] conducted 
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investigations in the frequency domain. In either case the results 

can be transformed to the other domai n by use of the Fourier trans-

form or its inverse, 

f 
00 

- j wt 
F(w) = - oo f(t)e dt , (1) 

or 
CXl 

1 J +jwt f(t) = 2TI F(w)e dw. 
- 00 

(2) 

The third option of the experimenter in reactor noise analysis 

is the number of detection channels to be used. Early experiments 

by Balcomb, et al. [3], Cohn [8], and Rajagopal [17] used only one 

detection system to determine the output signal. Use of only one 

detection system requires that the detector efficiency be high 

enough to make the reactor noise signal observable above the random 

detection noise. The efficiency requirement can be relaxed somewhat 

by the use of two detection channels. Cross correlation of the 

signals from these two channels enhances the signal and rejects the 

uncorrelated noise. This type of cross correlation was used in in-

vestigations by Kryter, et al. [15] and Seifritz, et al. [20]. It 

should be emphasized that the cross correlation discussed here is 

between detection channels and not between input and output signals. 

References to both of these applications of cross correlation are 

found in the literature. 

Recently the use of the polarity correlation technique in 

reactor noise analysis has received much attention. In the polarity 

correlation process only the signs of the signals, with respect to 
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their mean values, are correlated. Theoretical investigations by 

Pacilio [16] and experimental investigations by Dragt [12] and 

Seifritz [19] have demonstrated that the polarity of the signals 

contains sufficient information to allow reactor noise to be analyzed 

by this method. 

Of the many possible combinations of options listed above, the 

objective of this study is to explore the theory and method of 

implementation of only one combination of these options, namely, 

the frequency domain polarity correlation method using two detection 

channels and an input of natural stochastic process noise. The theory 

will be developed to determine the prompt neutron decay constant for a 

critical reactor. The method of implem~ntation will be presented as a 

method similar to that of Seifritz [19], but modified by the use of 

dynamic (heterodyne) filtering. 
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II. THEORY OF THE COHERENCE FUNCTION RELATIONSHIP 

WITH THE PROMPT NEUTRON DECAY CONSTANT 

A. Background 

In the following sections formulations of the reactor noise source, 

the reactor transfer function, and the auto and cross spectral densities 

are developed for the critical reactor to show how the coherence 

function relates to the prompt neutron decay constant, a . The prompt c 
neutron decay constant is defined as 

where ~ is the delayed neutron fraction, 

t is the prompt neutron lifetime, 

~A is the total macroscopic absorption cross section for 

thermal neutrons, and 

v is the thermal neutron velocity. 

The polarity correlation technique for determining the coherence 

function is then developed to complete the theory of determining a c 

by polarity correlation. 

In this investigation it is assumed that the reader has knowledge 

of the basic concepts of impulse response, convolution, transfer 

functions, correlation functions and the Fourier transforms of cor-

relation functions, viz, the spectral density functions. All of 

these concepts are discussed in texts by Bendat [4], Brown, et al. 

[6], and Uhrig [23]. 
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B. Reactor Noise Source 

The noise input signal arising from the stochastic processes of 

fission and capture was first formalized into the noise-equivalent 

neutron source model by Cohn [9]. A condensed form of this develop-

ment is given below. 

Since both the fission and capture processes obey Poisson statistics, 

the same statistics obeyed by random electron flow in a diode, the 

noise-equivalent neutron source may be obtained from the Schottky 

formula [11] originally developed as a model of random electron flow 

in a diode. The analogous formula for calculating the noise-

equivalent neutron source may be written as 

where 

N (w) ns 
2-

2~.qir. 
~ ~ 

N (w) is the noise-equivalent neutron power spectral ns 
2 density in neutrons /sec, 

(3) 

qi is the net number of neutrons produced in the oc-

currence of a reaction of type i, and 

r. is the average rate of occurrence of the i type of 
~ 

reaction in units of inverse seconds. 

To apply equation (3), q and r must be determined for the cap-

ture process and for each fission process which results in a dif-

ferent number of neutrons being emitted. If ~ is the neutron density 

in the reactor, i is the prompt neutron lifetime defined as i = 1/(v~A), 
~c is the macroscopic capture cross section, and ~F is the macroscopic 
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fission cross section, then on a un i t volume basis ~/£ is the total 

reaction rate with 

Y.: 
(~/.t) L, 

c 
+ I::F c 

(4) 

the capture rate, and 

(T]/i) I:: 
I::F 
+ ~ c 

(5) 

the total fission rate. Defining PJJ as the probability that v neutrons 

will be emitted during fission, the individual neutron production rates 

become 

(6) 

The net number of neutrons produced is minus one for the capture 

process, and v - 1 for the various fission processes. When the net 

number of neutrons produced, qi, and the average rate of occurrence, 

ri' for all of the processes are inserted into equation (3) the result 

is 

(7) 

where 

t 
v=l 

(8) 

From the definition of P the following equations hold: 

(9) 



www.manaraa.com

7 

CD 

L: vP v 
v=l v (10) 

CD 

L: 2 2 
v Pv v 

v=l 
(11) 

In addition, the equation 

1 (12) 

must hold in an infinite reactor, since the average number of neutrons 

emitted per fission times , the total fission rate must equal the sum 

of the total fission rate and the capture rate. Equation (7) now 

becomes 

N (w) ns 

where 

D 

211 [ 1 2 -:1 
~ 1 + v (v - 2v~ 

~ [l -vJ _ 2T]vD 
f, v - f, 

is the Diven factor. 

(13) 

(14) 

Since a reactivity change, 6k, results in a change of 6k('f1/i) 

in the neutron production rate, the noise-equivalent reactivity source 

spectral density, with dimensions compatible to the standard reactor 

transfer function, can be written as 

<p (w) 
nn 

2 (£ /n) N (w) ns 

(15) 
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It should be noted that ~ (w) is independent of the frequency nn 
variable, w, and is therefore a "white" or "Gaussian" noise source. 

C. Reactor Transfer Function 

The reactor transfer function, H (w), is the frequency domain r 

description of the kinetics of a reactor model. In this study the 

point kinetic model of a critical reactor is developed in a manner 

similar to that used by Glasstone, et al. [14]. This model does 

not account for spatial variations within the reactor. 

where 

The development starts with the well-known diffusion equation, 

d1l (t) 
dt 

D is the diffusion coefficient, 

(16) 

' 2 
¢(t) is the time dependent neutron flux in neutrons/em -sec, 

S(t) is the time dependent neutron source in neutrons/cm3-sec, 

~A is the average macroscopic absorption cross section of 

the reactor, and 

-3 1l is the neutron density in em 

The total neutron production rate is K00~A¢(t), of which ~Koo~A¢(t) is 

the delayed neutron production rate and (1 - ~)K00~A¢(t) is the prompt 

neuton production rate, where ~ is the delayed neutron fraction and 

K is the infinite reactor multiplication factor. With the use of the 
00 

one group model of delayed neutrons, the delayed neutron production 

rate can also be defined as AC(t), where A is the decay constant in 
-1 -3 sec , and C(t) is the precursor concentration in em 
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When the source term is replaced by the delayed and prompt 

neutron production rates, equation (16) becomes 

Provided the reactor is near critical v2¢(t) can be replaced by 

- a2¢(t), resulting in 

K vL: ~(1 - S) - l + B
2
L

2
] 1l(t) + A.C(t) = d'll(t) (18) 

CD A K dt ' 
CD 

2 where L = D/~A and ¢(t) = 

K 
CD 

leaving 

v'll(t). 

' 

For the one group model 

d1l (t) 
dt 

(19) 

(20) 

Noting that the prompt neutron lifetime is equal to the neutron mean 

free path divided by the neutron velocity (L = 1/~Av), and that 

ok is defined as 

ok = Kef£ - 1, 

equation (20) may be written as 

An independent expression containing C(t) and 1l(t) is required to 

solve for these two variables. The rate of change of C(t) may be 

described as the precursor production rate minus t he decay rate, 

(21) 

(22) 
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Substituting ¢(t) = v~(t) and i = 1/vLA results in 

dC(t) = (~)~(t) - AC(t). dt i 

Addition of equations (22) and (24) yields 

d](t) = 6k ~( ) _ dC(t) 
dt i t dt 

Assuming only small variations from steady state conditions, C(t) 

and ~(t) can be written as 

c ( t) c + oc ( t) 

and 

~(t) = ~ + 6~(t). 

Hence, equation (25) becomes 

dTI(t) = d(o](t)) = ~k (~ + o~(t)) _ d(oc(t)) 
dt dt ~ dt 

or ignoring the small 6k6~(t) term 

d(6TI(t)) = 6k ~ _ d(6C(t)) 
dt i dt 

Equation (24) becomes 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

dC(t) = d(6C(t)) = ~ (] + 6~(t)) - A(C + oC(t)). (30) 
dt dt ~ 

In a steady state condition dC(t)/dt 0, 6~(t) = 0, and 6C(t) = 0 

resulting in the equation 
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A.C. (31) 

Using equation (31), equation (30) reduces to 

d(o~~t)) = ~ 6~(t) - A.6C(t). (32) 

Equations (29) and (32) can be transformed from the time domain 

to the frequency domain by use of the Laplace transform Where jw is 

the Laplace variable, so that 

jw6~(jw) = ~ 6k - jw6C(jw) (33) 

and 

jw6C(jw) = i 6'T)(jw) - A.6C(jw). (34) 

Combining these last two equations, and noting that 6k may be a 

function of frequency, yields the one group critical reactor transfer 

function 

H (w) r 
= 61)(jw) = ---"--~~ 

6k(w) jw~ + jw~ , 
jw + fl. 

(35) 

When the delayed neutron effects are ignored by setting A. = 0, the 

transfer function becomes 

H ( ) __,,_.;...~'!]__,. = ~ /~ 
r w = jw~ + ~ 1 + jw/a 

c 

where the prompt neutron decay constant, a , is equal to ~~~. c 

(36) 
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D. Auto Spectral Densities 

The signal flow diagram resulting in two signals x(t) and y(t), 

the outputs of two independent but identical detection channels, is 

shown in Figure 1. With the use of the convolution integral the 

signal b(t) can be expressed as 

The auto correlation function of b(t) is by definition 
T 

dtb ( '1") = lim .!._ J b ( t) b ( t + '1") d t "'1> T-ooo 2T 
-T 

(37) 

T co co 

= lim .!._ f i f h O.)h (S)'ll (t - 1..)11 (t + '1" - s) df..d~dt T-ooo 2T r r 
-T -co -co 

co co T • J~f~ hr(A.)hr(;) [~-== JT ~(t - A.)~(t + T - ~)dt}).d~ 
co co 

= f f h (A.)h (~)~ ('1" + A. - ~)df..d~. (38) r r nn 
-co -co 

The auto spectral density of b(t), ~bb(w), is the Fourier transform of 

~bb('l"), or 

(39) 

Using equation (38) for ¢bb('l") yields 

Letting u = '1" + A - S, then '1" = u + S - A and 



www.manaraa.com

X Channel 
Detector 

..... , 
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Detector 

H(w) - transfer function ..... , 

h(t) - impulse response function 

~(w) - spectral density function 

Figure 1. Signal flow diagram. 
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..... 
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~ (w yy ) 
....... , 

y(t ) 

t-' 
w 



www.manaraa.com

14 

co co co 

~bb(Ul) =f f f h (A.)h (S)¢ (1-l)e-jm(~S-A.)dA.d~dl-l r r nn 
-co -co -co 

(41) 

This important result says that the output auto spectral density of a 

transfer function output is equal to the square modulus of the transfer 

function times the input auto spectral density. 

Cohn [9] states that the spectral output of a detector has two 

components. The first component is proportional to the input spectrum 

and may be expressed as 

where W is the detector efficiency - neutrons detected per 

fission, 

t is again the prompt neutron lifetime, 

q is the average charge produced per neutron detected, 

and 

~bb(UJ) is the input neutron noise signal auto spectral 

density. 

It should be noted that the detector efficiency, €, used by Cohn [9] 

is defined as neutrons detected per neutron absorbed. This differs 

with the definition of detector efficiency, W, used above. For a 

critical reactor, neutrons detected per neutron absorbed is equal to 
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the neutrons detected per fission times t he average number of neutrons 

emitted per fission, or W = e:v. The second component of the detector 

output signal is a white noise component which arises from the 

statistical nature of the detection process. It may be written 

as 

(43) 

Hence, the spectral outputs of the detectors shown in Figure 1 are 

2-2 
ip qx(w) <Pdx(w) + !!....!L <Pbb (w) 

1,2 

w2-2 
IH (w)I 2

<P (w), ipdx(w) +~ £ 2 r nn (44) 

and similarly, 

w2-2 
IH (w) l2ip (w). ip (w) = ip d (w) +~ qy y 1,2 r nn (45) 

It should be noted that ipdx(w) and <P dy(w) are uncorrelated noise sources, 

even though they have the same magnitude, given in equation (43). 

Using a development similar to the one used to arrive at 

equation (41), the auto spectral densities of the output signals x(t) 

and y(t) shown in Figure 1 are easily shown to be 

iJi (w) XX IHd(w)l 
2

ip (w) qx 

I Hd (w) [ +; dx (w) 
w2-2 

I H (w) [
2o (w)} , +~ 

1,2 r nn (46) 

and similarly, 

[Hd(w) [ 21•dy(w) 
2-2 

[H (w) [
20 (w)} . <ii (w) ~ + 2 yy i, r nn (47) 
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In equations (44) and (45) the second term is the reactor noise 

contribution to ~ , while the first term is the detection noise qx 
contribution. A ratio of 'correlated reactor noise to uncorrelated 

detection noise can be defined as 

w2q2 
I H (Ul ) 1 2~ 

1,2 r nn 
Qc(w) = 

~ d (w) 
(48) 

which upon substitution of equations (15)' (36), and (43) reduces to 

where 

l+(w/a) 2 
c 

c WD 
~ax= ~2 • 

c 
~ax 

=--..;..;.;.;;~-~ 

1 + (w/a ) 2 
c 

(49) 

(50) 

When the effects of the statistical nature of the detection chamber 

ionization process are included, as was done by Seifritz [19], the 

maximum ratio of reactor noise to detection noise is reported as 

c WD 
~ax = R~2 (51) 

where R is the "Bennett factor" which is dependent on ionization 

statistics. In either case, the importance of detector efficiency in 

making the correlated reactor noise signal observable above the un-

correlated detection noise in the auto spectral density ~ (w) or 
XX 

~ (w) is apparent since the ratio is directly proportional to W, the YY 
detector efficiency. 
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E. Cross Spectral Density 

It has been previously mentioned that the use of two detection 

systems can allow the rejection of the random detection system noise. 

This fact is evident in the formulation of the cross spectral density 

function given below. Figure 2 shows two identical detection signal 

processing systems which have as inputs the sum of a common signal, 

i(t), and an uncorrelated signal, Z(t), for each channel. Note that 

i(t), Z (t), and Z (t) have no correlation with each other. When the m n 

convolution integral is applied, it is found that 
00 

m(t) = 1~ hd(u)[Zm(t ·- u) + i(t - u)]cb 

and 
00 

n(t) = J[~ hd(V)[Z
0
(t - v) + i(t - V)]dv , 

The cross correlation function of m(t) and n(t) is 
T 

lim 1 J[ ¢nm ('T') = T-ooo 2T m(t)n(t + 'T')dt 
-T 

(52) 

(53) 

T oo oo 

= i.: ~T 1T 1~ L hd (u)hd(v)[Zm(t - u) + i(t - u)] 

X[Z (t + 'T' - v) + i(t + 'T' - v)]dudvdt n 

1U) Z ( t + 'T' - V) n 

+ Z (t - u) i (t + 'T' - v) + 1 (t - u) Z (t + 'T' - v) m n 
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+ i(t - u)i(t + ~ - v)]dudvdt 

f lim L JT [ z ( t - u) Z ( t + ~ - v) 
\T~ 2T m n 

-T 

+ Z (t - u)i(t + ~ - v) + i(t - u)Z (t + ~ - v) m n 

+ i(t - u)i(t + r - v)]dt}dudv 

- v) + </J i ( ~ + u - v) .zm 

+ ¢ . (~+ u- v) + ¢i.(~+ 1-l- v)]dudv. (54) 
1zn 1 

Since i(t), Z (t), and Z (t) are uncorrelated, ¢ , ¢ i' and ¢i m n zmzn zm zn 
are equal to zero, leaving the cross correlation of m(t) and n(t) 

as 

(55) 

The cross spectral density function is the Fourier transform of the 

cross correlation function, or 

q? (w) 
mn Joo ·w~ 

~ ¢mn(~)e-J d~ 
-00 

= LLL hd(u)hd(v)¢ii (r+ ~ -
- ·w~ v)e J dudvd~. 

(56) 

If a change in variables is made, 6 = ~ + u - v, then ~ = 6 + v - u 

and 
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~ (w) 
IIDl 

(57) 

Note that the output cross spectral density function is dependent 

only on the square modulus of the transfer function and the common 

input power spectral density function, and is independent of the 

two uncorrelated signal inputs. Applying these results to the 

cross spectral density of the two output signals shown in Figure 1, 

it will be recalled that ~ (w) and ~ (w) as expressed in equations (44) qx qy 
and (45) contain a common spectrum of 

(58) 

The and uncorrelated components of ~dx(w) and ~dy(w) respectively. 

resulting cross spectral density function of the two output signals 

shown in Figure 1 is therefore 

(59) 

and is independent of ~ dx(w) and ~dy(w). 

F. Coherence Function 

The inherent advantage of the coherence function is that it is 

independent of the detection system transfer function, Hd(w), shown 
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in Figures 1 and 2. Since the auto and cross spectral density func-

tions contain Hd(w) as a variable, this detection system transfer 

function must be determined before either the auto or the cross 

spectral density can independently be used to determine relationships 

among reactor parameters. If, however, the auto and cross spectral 

densities are combined in the form of the coherence function, p(w), 

defined as 

p(w) 
q; (w) 

= xy 
[I (w)qi (w)J 172 

XX yy 

and equations (46), (47), and (59) are inserted to give 
2-2 

(60) 

~ IH (w)l 21 (w) .t 2 r nn 
p (w) = -r:::------:::--::--------=-=,....-----=--=--------.=-,1""':""""= 

~ dx(w) + 11)2 I Hr (w) 12• nn (w)J [ 0 dY (w) + wJ2 I Hr (w}l2•nn (w~ 1/2 ' 

(61) 

it is evident that p(w) is independent of Hd(w). If I (w), Hr(w), nn 
q;dx(w), and ldy(w) are replaced by equations (15), (36), and (43), 

c and the identity for ~ax is used, p(w) can be reduced to 

c 
Qmax P (w) = ---~=----

oc · + (w/a ) 2 
"max · c 

(62) 
1 + 

A "Bode plot" (log amplitude vs. log frequency) of equation (62) 

indicates that the coherence function has a low frequency plateau 

value of 

~ax p(w << a ) = -~;;;;;.;;...-

c 1 + ~ax 
(63) 
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and a break frequency of 

Combining equations (64) and (63) and solving for a yields c 

Therefore, if the coherence function is known, the prompt neutron 

decay constant, a , can be determined. c 

(64) 

(65) 
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III. DETERMINATION OF THE COHERENCE FUNCTION BY POLARITY CORRELATION 

A. Overall System 

Up to this point the discussion has involved explaining how the 

coherence function relates to the prompt neutron decay constant. 

The coherence function may then be evaluated in the traditional way 

by finding the auto and cross spectral density functions, or it may 

be evaluated by the method of polarity correlation demonstrated by 

Seifritz [19]. A system diagram of this type of polarity correlation 

is shown in Figure 3. The two input neutron noise signals x(t) and 

y(t) are the same signals that are shown as output signals in 

Figure 1. These two neutron noise signals are filtered by variable 

frequency narrow pass-band filters and fed into a polarity correlator. 

The polarity correlator determines the signs of the two signals with 

respect to their mean values, compares these signs, and outputs 

either a + 1 or .. - 1 logic state as shown in Table I. This polarity 

correlator output, C (t), is time averaged by using it to drive an 
Ul 

"AND" circuit in conjunction with a 100KHz square wave and then 

counting the "AND" output for a specified period of time. The 

average output is given by 

C (t) = [2(counts recorded out of "AND'')] _ 1. 
w (total no. of 100KHz counts) (66) 

The following shows that C (t) yields the coherence function directly. 
Ul 
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Table I. Polarity correlator output 

Sign of x(w, t) 
with respect to 
x(w, t) + + 

Sign of y(w, t) 
with respect to 
y(w, t) + + 

Logic state of 
correlator 
output C (t) + 1 - 1 - 1 + 1 

UJ 

B. Theory of Coherence Function Determination 

Seifritz [19] notes that if x(w, t) and y(w, t) are equal to zero, 

the joint probability density function of x(w, t) and y(w, t) is 

f(x, y) 

X [x2 - 2p(w) xy + y2J l (67) 
x2 x2y2 y2 

where p(w) is the coherence function of x(w, t) and y(w, t). The 

above joint probability density function may be thought of as a 

Gaussian shaped "mountain" above the xy plane with unity volume and 

centered at the origin. The appropriate assumption made in arriving 

at equation (67) was that x(w, t) and y(w, t) were normal or Gaussian 

random noise signals, which has been found to be the case. 

The output of the correlator is shown in Figure 3 as C (t) with 
UJ 

either a + 1 or - 1 logic state depending on the signs of x(w, t) 
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and y(w, t) as shown in Table I. The probability that Cw(t) will be 

in the + 1 logic state, pw+' can be found by integrating the volume 

of f (x, y) above the area in the xy plane where x(w, t) and y(w, t) w 
are both positive or both negative. Integrating over the first and 

third quadrants yields 

f (x, w 

0 0 

y)dxdy + f~f~ 
TI + 2 ArcSin p(w) 

2TI 
• 

f (x, y)dxdy w 

(68) 

The probability that C (t) will have a - 1 logic state, P , can be w w-
found in like manner by integrating over the second and fourth quadrants 

resulting in 
CXl 0 

y)dxdy + 11 fw (x, y)dxdy 
0 -co 

= TI - 2 ArcSin p(w) 
2TI 

The time average of C (t) is w 

C (t) = P - P =~ArcSin p(w), w w+ w- TI 

or solving for the coherence function gives 

(69) 

(70) 

(71) 

Therefore, by selecting various frequencies with the variable frequency 

narrow pass-band filters shown in Figure 3, the coherence function as 

a function of frequency can be determined by equation (71), and the 
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prompt neutron decay constant, a , is then found by the use of c 

equation (65). 
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IV. APPLICATION OF DYNAMIC FILTERING 

A. Theory of Dynamic Filtering 

The basis for dynamic (heterodyne) filtering is the linear modula-

tion process by which a frequency spectrum can be shifted in frequency. 

This allows the building of a "variable center frequency" bandpass 

filtering system which consists of a fixed frequency filter and a 

linear modulator to shift the incoming signal by a variable amount 

in frequency to make the fixed frequency filter appear variable. Any 

linear modulator will perform the frequency shift required, but for 

reason of spectral content of the output which is discussed later, a 

balanced modulator in the form of a "bipolar chopper" appears to be 

the most suited to the application of dynamic filtering in polarity 

correlation. 

The waveforms of a "bipolar chopper" are shown in Figure 4. 

It is apparent that the output signal is simply the input signal 

alternatively sampled or "chopped" at the positive and negative 

values of its amplitude. The output signal may be written as 

where 

O(t) i(t)S(t), 

i(t) is the input signal as a function of time, and 

S(t) is the square wave carrier signal. 

(72) 

The analysis of the spectral content of the output signal begins by 

showing the result of multiplying two sinusoidal signals. If W(t) 

is the product of two sinusoids, 

(73) 
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which by trigometric identity is 

(74) 

indicating that the multiplication of two sinusoids results in two 

new sinusoids at frequencies equal to the sum and difference of the 

original two frequencies. If this argument is extended to the case 

of the multiplication of the signals in equation (72), each of which 

may contain a whole spectrum of frequencies, the resulting output 

spectrum contains the sum and difference frequencies of every possible 

product of the frequency components of the two multiplied signals. 

By a simple Fourier series representation of S(t), the zero mean 

square wave spectrum can be shown to be as indicated in Figure Sb. 

The sum and difference frequency of all possible component products 

between the assumed input spectrum, Figure Sa, and the square wave 

spectrum results in the bipolar output spectrum shown in Figure Sc. 

For comparison, Figure 6 shows the output spectra of an amplitude 

modulator and a unipolar chopper form of balanced modulator as shown 

by Carlson. [7] and Schwartz [18] respectively. Note that the 

spectral contents of the unipolar and bipolar outputs are identical 

except for the original input spectral content (baseband signal) 

included in the unipolar output. 

Figure 7 illustrates the location of the center frequency for 

the fixed frequency filter. As the carrier frequency is lowered, 
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selected components of the "lower side band" are placed in the pass 

band of the filter. 

The advantages of the bipolar chopper are now easily pointed out. 

Since the base band signal is not present in the bipolar output spectrum, 

the center frequency of the filter may be set at a lower frequency 

with the bipolar chopper than with the unipolar chopper. A lower 

center frequency allows the same selectivity, in Hz of bandwidth, with a 

lower "Q" filter. The "Q" of a filter is defined as the bandwidth 

divided by the center frequency, or Q = f/t:.f The advantage of a 

lower "Q" filter is also shared with the amplitude modulator (AM), 

but the AM output spectrum contains a strong carrier frequency component 

which could mask the very lowest frequency components of the input 

spectrum (those nearest the carrier frequency). An additional ad-

vantage of the bipolar chopper is its circuit simplicity. 

In theory, the center frequency of the fixed filter used with a 

bipolar chopper may be chosen (neglecting filter bandwidth) as low 

as one half of the maximum frequency contained in the input spectrum. 

Any lower center frequency would result in inaccurate levels being 

recorded for low frequencies in the input spectrum, for the "frequency 

fold over" discussed by Bennett [5] would allow the highest frequency 

components to pass through the filter with the low frequency com-

ponents. 

In actual practice, a "guard band" of frequency is needed to 

allow for the filter bandwidth, the filter skirts, and signals which 

are not band limited. The maximum frequency contained in the input 

spectrum appears to be a practical minimum for the fixed filter 
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center frequency in a polarity correlation dynamic filtering sys-

tern, 

B. Advantages of Dynamic Filtering 

The two narrow pass band filters shown in Figure 3 may be 

independent tunable filters, but care must be taken to assure that 

both filters have been set to the same center frequency. For a large 

number of data points this tuning procedure can become quite tedious. 

With a dynamic filtering system, each signal is fed into a 

modulator followed by a fixed frequency filter. The filters are 

aligned permanently to the same center frequency, and then a common 

carrier frequency is used to drive both modulators resulting in 

matching filter pass band locations at all filtering frequencies. 

A change in filtering frequency requires only a change in the carrier 

frequency. 

The dynamic filter also has the capability of better resolving 

power or selectivity, since a narrow bandwidth, sharp skirted, fixed 

filter is easier to build than a variable frequency filter with 

similar performance, 

C. Requirements of a Polarity Correlation Filtering System 

The range of frequencies that the filtering system is required to 

process can be estimated from equation (64). For u235 fueled thermal 

reactors and average detector efficiencies, the coherence function 

break frequencies are typically in the 5-50 Hz range. Information 
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on the coherence function amplitude is needed to at least a decade 

above the break frequency, resulting in needed filtering capability 

up to approximately 500 Hz for a typical thermal reactor applica-

tion. If the incoming neutron noise signal is band limited to this 

frequency the center frequency of the filter can be chosen at this 

frequency as discussed in the previous section. 

The bandwidth, or "cp, of the filter is chosen as a compromise 

between increased selectivity for accurate determination of the 

coherence function and the expense of the filter. The minimum band-

width of the filter is also limited by requiring reasonable data 

collection times. As the bandwidth decreases when filtering random 

noise, the output must be monitored for a longer period of time to 

insure an accurate measurement. A bandwidth of 5 Hz appears to be a 

good compromise value for a thermal reactor application. 

The sharpness of the filter skirts required is determined by 

the coherence function toll-off. A "Bode plot" of equation (62) 

shows the coherence function to be decreasing in amplitude at 

20db/decade above the break frequency. The filter roll-off should 

be sharper than this. 

An additional requirement of the filter is a large amount of out-

of-band attenuation. This is required to reject all of the odd carrier 

harmonic spectra included in the bipolar chopper output shown in 

Figure 5c. A minimum of 60db of attenuation at all out-of-band fre-

quencies is needed. 

• 
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V. CONCLUDING REMARKS 

This study has reviewed the theory of the polarity correlation 

technique as used in the determination of the prompt neutron decay 

constant, a . In the theory it was shown that the polarity correla-c 

tion technique was used to determine the coherence function, which in 

turn yielded the prompt neutron decay constant. The use of the coherence 

function highlights one of the advantages of polarity correlation, for 

it will be recalled that the coherence function has been shown to be 

independent of the signal processing equipment transfer functions. 

Because of this independence, the polarity correlation technique re-

quires no corrections to accommodate variations in processing equip-

ment frequency response; a fact that becomes very important when 

measurements are made on fast reactors where higher frequency signal 

processing is required. 

The review of polarity correlation theory has also shown that a 

polarity correlation system uses only the signs of the signals for 

information processing, making the system after the polarity sampling 

process a digital or logical system. Many commonly available and 

relatively inexpensive commercial logic packages can be used in the 

implementation of the system, and the range of external digital pro-

cessing equipment to which the polarity correlation system could be 

mated is quite large . 

The application of dynamic filtering in a polarity correlation 

system was also presented. The advantages of faster data collection 

procedures and better selectivity were pointed out. 
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In summary, the polarity correlation technique of reactor noise 

analysis has sufficient advantages over more conventional analog 

techniques to insure that it will become an increasingly popular 

method of noise analysis particularly in fast reactor applications. 
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